Collection of two peripheral blood stem cell concentrates from healthy donors

TitleCollection of two peripheral blood stem cell concentrates from healthy donors
Publication TypeJournal Article
Year of Publication1999
AuthorsStroncek DF, Clay ME, Jaszcz W, Lennon S, Smith J, McCullough J
JournalTransfus Med
Volume9
Issue1
Pagination37 - 50
Date PublishedMar
ISSN0958-7578 (Print) 0958-7578 (Linking)
Accession Number10216904
Keywords*Blood Donors, *Blood Specimen Collection, *Hematopoietic Stem Cells, Adult, Blood Cell Count, Female, Humans, Leukocyte Count, Middle Aged, Platelet Count, Reference Values, Transplantation, Homologous
Abstract

When peripheral blood stem cell (PBSC) concentrates are used for allogeneic transplants, two or more apheresis procedures must often be performed. To determine how many cells could be collected from healthy people by two back-to-back apheresis procedures and what effect these collections would have on donors, we gave 19 healthy people 5 micrograms kg-1 day-1 and 21 people 10 micrograms kg-1 day-1 of granulocyte colony stimulating factor, filgrastim, for 5 days. We then collected two PBSC concentrates, one on day 5 and one on day 6. A third group of six people was given filgrastim 10 micrograms kg-1 day-1 for 5 days but had no PBSC concentrates collected. PBSC concentrate cell counts and donor cell counts, symptoms, and blood chemistries were assessed for up to 1 year. On day 5, three times more CD34+ cells were collected from donors given 10 micrograms kg-1 day-1 than those given 5 micrograms kg-1 day-1 (P = 0.009) but on day 6 the quantity of cells collected was the same (P = 0.23). The total number of CD34+ cells collected was two times greater in donors given the higher dose of filgrastim (median = 579 x 10(6); range = 174-1639 x 10(6) compared to 237 x 10(6); 103-1670 x 10(6); P = 0.061). Platelet counts fell after each PBSC concentrate collection, but there were no differences between the two groups of donors in platelet counts measured immediately after each collection. The platelet counts also fell in people who did not donate PBSC concentrates. The lowest counts in all three groups of people also occurred on day 10. In PBSC donors given 10 micrograms kg-1 day-1 of filgrastim the absolute neutrophil count (ANC) fell below premobilization counts on day 14. In donors given 5 micrograms kg-1 day-1 the ANC fell below premobilization counts on days 21, 28 and 49, CD34+ cell counts were significantly lower than premobilization counts on days 14 and 28 in donors given 10 micrograms kg-1 day-1 of filgrastim and on day 14 in those given 5 micrograms kg-1 day-1. No decrease in neutrophil or CD34+ cell counts occurred after filgrastim was given in the people who did not donate PBSC concentrates. The incidence of symptoms was similar in both groups of PBSC concentrate donors, except that those given 10 micrograms kg-1 day-1 were more than twice as likely to experience myalgias as those receiving the lower dose (P = 0.029). Several blood chemistries changed. Levels of alkaline phosphatase, LDH, SGPT, SGOT, uric acid and sodium increased. Levels of bilirubin, total protein, potassium, calcium and chloride decreased. In conclusion, twice as many CD34+ cells were collected from donors given 10 micrograms kg-1 day-1 of filgrastim. Platelet, neutrophil and CD34+ cell counts fell after the PBSC concentrate collections. The fall in platelet counts was due to both the collection and the administration of filgrastim. The falls in neutrophil and CD34+ cell counts were due to the loss of haematopoietic progenitor cells in the PBSC concentrates. Allogeneic PBSC concentrate donors should be given 10 micrograms kg-1 day-1 of filgrastim, and if possible only one component should be collected in order to avoid thrombocytopenia.

Notify Library Reference ID1476

Related Incidents